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bstract

eramic springs are commercially available and a detailed reliability analysis of these components would be useful for their introduction in new
pplications. In this paper an analytical and a numerical analyses of the failure probability for coil springs under compression is presented. Based

n analytically derived relationships and numerically calculated results, fitting functions for volume and surface flaws will be introduced which
rovide the prediction of the failure probability of ceramic coil springs with different spring- and material-parameters. As an example, typical
echanical properties for Si3N4 are chosen. It is shown that surface flaws control the strength of the investigated springs.
2008 Elsevier Ltd. All rights reserved.
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. Introduction

Springs are fundamental mechanical components which form
he basis of many mechanical systems. Unlike other compo-
ents, they undergo significant deformation when loaded and
heir compliance enables them to store readily recoverable

echanical energy. Thus, springs must possess high strength
gainst the applied force. For that reason, high strength mate-
ials such as high carbon steels have been and are still major
aterials for springs.
However, in recent years the increase of efficiency in many

echanical systems has become more important and this has
ntroduced a new demand for the conservation of more energy
n springs. In addition there is need of springs in different work-
ng conditions for example at high temperature, high wear rate
r high corrosion rate. One way to satisfy these demands is the
ntroduction of new materials for springs. Ceramics have this
otential with excellent resistivity to heat, low density, high
trength at high temperatures and better corrosion and wear
esistances compared to other materials and therefore there is

growing interest in the fabrication of ceramic springs.

The loss coefficient is an important dimensionless material
arameter in cyclic loading and plays an important role in the
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aterial selection for springs.1 It is the fraction of mechanical
nergy loss in a stress–strain cycle. If a material is linear loaded
lastically to a stress σ with corresponding strain ε, it stores
lastic strain energy per unit volume, u = (1/2)Eε2, where E is
he Young’s modulus. If the material is unloaded (after loading),
t dissipates energy �u. The loss coefficient η per radian can be
efined as η = �u/2πu.

A high loss coefficient is desirable for damping vibrations
hile a low loss coefficient transmits energy more efficiently.
n the other hand, since the minimum energy loss is desired,

he material which is used for springs should have a low loss
oefficient. A material property chart of the loss coefficient η

t 30 ◦C plotted against the Young’s modulus E is supplied
or almost all kinds of material by Ashby.2 Elastomers have
he highest loss coefficient (η = 1) and advanced ceramics have
he lowest with a four-order-of-magnitude reduction compared
o elastomers (η = 10−4). High-carbon steels have just slightly
igher loss coefficients than the ceramics.

As stated before, one of the new demands placed on springs
rises from the working conditions where the springs are used.
t this point, the materials nowadays used for springs have some

imitations with respect to temperature, corrosion and wear.
ith ceramics such as Al2O3, Si3N4 or SiC, it is possible to

ork at high temperature up to approximately 1000 ◦C which is
ot possible with most other materials. Sato et al.3 made some
xperiments and broke Si3N4 ceramic springs at different tem-
eratures. They observed no decrease in fracture stress until

mailto:g.schneider@tu-harburg.de
dx.doi.org/10.1016/j.jeurceramsoc.2008.08.012
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is a plain spring which is shown in Fig. 1. This type of spring
is used because it is the easiest to be treated for the analytical
failure probability calculation.

The spring parameters shown in Fig. 1 are:
014 S. Nohut, G.A. Schneider / Journal of the E

000 ◦C and reported that the mean fracture stress at 1200 ◦C was
nly slightly less than the values obtained at lower temperatures.
urthermore, Rubesa and Danzer4 mentioned the importance of
jection velocity of springs in the technical applications and
eported advanced ceramics as interesting alternative materials
o high carbon steels for the spring production according to the
nalytically calculated ejection velocity.

There are few references on ceramic springs in the literature.
elical ceramic springs produced from sintered vitreous-bonded

lumina were reported by Chironis.5 Hamilton et al.6 inves-
igated the mechanical properties of helical ceramic springs

anufactured from MgO partially stabilized zirconia. They
easured the spring deflection versus applied load at room

emperature and also at high temperatures and observed that
he material successfully obeys Hooke’s law also at elevated
emperatures.

Wright et al.7 investigated the effect on the surface quality
f a polymer-ceramic suspension used for the fabrication Al2O3
prings and windings by extrusion. The strength of Si3N4 coil
prings at high temperatures up to 1000 ◦C and the influence of
ize on the strength of the springs by derivation of an equation
o calculate the effective volumes of coil springs were examined
y Sato et al.3 It was reported that the mean strength of coil
prings decreases with increasing effective volume which can
e applied in design calculation.

Ceramic springs are mostly manufactured by extrusion of a
olymer–ceramic suspension.7,8 The main steps of this method
re preparation of the suspension, extrusion, debinding and
nally sintering. The composition of the suspension, the working

emperatures and the way of removal of diluents are important
arameters in order to avoid surface defects and to obtain a
aluable surface quality. Furthermore, there is also a study in
he literature where the springs were produced by machining
he zirconia tubes.6

Despite the advantageous properties of ceramics, there are not
oo many examples of ceramic springs in the industrial applica-
ions. Firstly, manufacturing of springs from ceramics is more
xpensive compared to other materials. Secondly and the major
eason is the brittle failure of ceramics under tension. Since even
very small defect can cause the failure of the component and

here is a scatter of strength values, ceramics are less reliable in
onstruction from the point of view of strength compared with
etals. However, we are not aware of any study in the literature
hich gives hints to the reliability of ceramic springs. Neverthe-

ess we think that there is a need for such a reliability analysis to
rovide useful information to the user about the failure proba-
ilities of springs with different spring- and material-parameters
nder different loading conditions.

The main aim of this paper is an analytical and a numeri-
al failure probability analyses of ceramic coil springs under
ompression. The mechanical properties of Si3N4 ceramics will
e used as an example. Firstly, the coil springs will be shortly
ntroduced. It will be explained how to get series of springs

hich meet the user specifications with a wide range of values

or spring constant k, maximum displacement δmax or maxi-
um allowable force Fmax. Afterwards, the scaling of failure

robability with spring- and material parameters will be estab-
F
p

an Ceramic Society 29 (2009) 1013–1019

ished analytically by solving the Weibull distribution function
ith the theoretical stress distribution in the spring. Thereafter,
numerical analysis will be performed with the finite element

oftware ABAQUS and the post-processor STAU9 which takes
nto account the effect of boundary conditions, contact stresses
nd multiaxial loading. Finally fitting functions for volume flaws
nd surface flaws will be introduced which corrects the analytical
esults based on the numerical solutions. This makes it possible
o predict the failure probability of ceramic springs with different
pring geometry and material parameters.

. Coil springs

There are several types of springs used for different applica-
ions. In this paper, the reliability of ceramic coil springs under
ompression load is studied since ceramics are much stronger
nd more reliable under compression than under tension. Their
urns are not touching in the unloaded position and they need no
ttachment points. If these springs are not compressed beyond
heir elastic limit, they obey Hooke’s law, which states that the
orce F by which the spring is compressed is linearly propor-
ional to the distance x from its equilibrium length:

= −kx (1)

here k is the spring constant of the spring.
There are four types of commonly used springs, namely plain,

lain-ground, squared and squared-ground springs. They differ
rom each other by their ends.1 Here the investigated spring type
ig. 1. Schematic representation of plain type coil spring with used spring
arameters.
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: wire diameter (mm),
: spring diameter (mm),
: pitch, which is the distance between the center of two

coils (mm),
: applied force (N).

The spring index C gives the ratio of the spring diameter to
ire diameter and takes typically values between 3 and 12.

= D

d
, 3 ≤ C ≤ 12 (2)

a gives the number of active coils which is equal to the total
umber of coils for plain type of coil springs. In this study, each
pring will be specified by using the parameters d, C and Na.
or example, d1C6Na5 means a spring with wire diameter of
= 1 mm, spring diameter of D = Cd = 6 mm and Na = 5 active
oils.

In order to get a series of springs which supply the user a
election of different sizes and parameters, some initial spring
arameters should be identified. First of all, initial values are
iven to d, C and Na. Then it is possible to calculate the spring
onstant k, and the solid length ls which is defined as the length
f the spring when under sufficient load to bring all coils into
ontact with adjacent coils and additional load causes not further
eflection, as reported by Hamrock et al.1

= Gd

8C3Na(1 + (0.5/C2))
≈ Gd

8C3Na
(3)

s = d(Na + 1) (4)

here G is the shear modulus of elasticity.
The next step is the assignation of pitch value, p which is

efined according to the desired displacement of the spring.
fter the pitch is assigned, it is possible to calculate the free

ength lf which is defined as the overall length of a spring in the
nloaded position, maximum displacement of the spring, δmax
nd the maximum applied force Fmax are given by the following
quations:
f = pNa + d (5)

max = lf − ls (6)

max = δmaxk (7)

f

τ

ig. 2. Shear stresses acting on the cross-section of the wire (a) torsional shear str
lockwise turning of x − y system.
an Ceramic Society 29 (2009) 1013–1019 1015

. Analytical scaling of failure probability

Failure of ceramic materials is caused by unstable propa-
ation of natural flaws existing in the material. Since there is
scatter in location, size and orientation of these flaws, the

trength of ceramic components also scatters. In order to use
eramics as engineering materials, the strength has to be char-
cterized. The most widely used expression for characterization
s the cumulative distribution function proposed by Weibull10

n 1939. Since that time, this theory has become the one most
idely used for application to the fracture of ceramic materials.
he function depends on the “weakest-link-hypothesis” where

he most dangerous flaw controls the strength. The most danger-
us flaw is the flaw for which the most unfavorable combination
f size, location and orientation in the stress field is obtained.11

s a detailed derivation of the failure probability using Weibull
tatistics with multiaxial failure criteria is not the focus of this
rticle, the reader is referred to the literature.12–14

In order to calculate the failure probability analytically, the
heoretical stress distribution occurring in the spring is to be
sed. Here the helical spring form can be assumed as a straight
ire which has the same stress distribution on cross-section and

he same volume as the spring. When the spring is compressed
ith a force F (see Fig. 1), torsional shear stress is produced
ue to torque on the cross-section (Fig. 2a). Additionally, a
ransverse1 (direct) shear stress appears (Fig. 2b) due to the
ending of the wire because the spring is not a straight wire
ut is coiled with a pitch.

The maximum torsional shear stress on the cross-section of
he wire illustrated in Fig. 2a can be calculated by using the
ollowing equation:

t,max = 8FD

πd3 (8)

The transverse shear stress shown in Fig. 2b is constant over
he cross-section of the wire and can be expressed for a circular
ross-section

d = 4F

πd2 = 1

2C
τt,max (9)
The change in the torsional shear stress can be described as
ollows using the cylindrical coordinate system given in Fig. 3a:

t(r) = τt,max

( r

d/2

)
(10)

ess and (b) transverse (direct) shear stress. The z-direction is defined by the



1016 S. Nohut, G.A. Schneider / Journal of the European Ceramic Society 29 (2009) 1013–1019

F sor on
a

z

σ

H
z
n
l
t

a
c
o
i
a

σ

t
s

P

w
s
o

σ

w
t
t
t
o
s
t

V

W

P

o
l

i

l

= 2

π

=0
(s
ig. 3. (a) Cylindrical coordinate system used for the introduction of stress ten
round y-axis.

The stress tensor in the volume of the springs in the x, y and
-coordinate system (see Fig. 2) can be written as follows:

(r, γ)=

⎡
⎢⎣

0 0 −τt(r)sin(γ)

0 0 τt(r)cos(γ) + τd

−τt(r)sin(γ) τt(r)cos(γ) + τd 0

⎤
⎥⎦

(11)

ere the normal stresses in the z-direction are assumed to be
ero (plane stress approximation) since the appeared longitudi-
al stresses due to the pure torsion are very small for materials
ike steels and ceramics which have high shear moduli compared
o rubber-like materials and hence can be neglected.15,16

In this part for the sake of simplicity, only the cracks which
re lying in one plane will be investigated. Lets us assume a
rack lying on the z′ − y plane whose normal is in the direction
f x′ (see Fig. 3b). The normal stress acting on the crack which
s found by rotating the stress tensor given in Eq. (11) by 45◦
round the y-axis is equal to:

n(r, γ) = τt(r)sin(γ)

=

⎧⎪⎨
⎪⎩

τt,max

( r

d/2

)
sin(γ) for 0 ≤ γ ≤ π

−τt,max

( r

d/2

)
sin(γ) for π ≤ γ ≤ 2π

(12)

The failure probability PF,V of a ceramic component con-
aining volume flaws can be calculated according to the normal
tress criterion as follows:

F,V(σn) = 1 − exp

[
− 1

V0

∫
V

(
σn(r, γ)

σ0

)m

dV

]
(13)

here m is the Weibull modulus, σ0 is the cumulative mean
tress and V0 is the unit volume containing an average number
f flaws. The normal stress σn (r, γ) can be written as

Veff =
∫

V

[( r

d/2

)
sin(γ)

]m

dV

= π

2(m + 2)
d3 CNa

∫
γ

n(r, γ) = σ∗g(r, γ) (14)

w

V

the cross-section of the wire and (b) rotation of the coordinate system by 45◦

here σ* is the reference stress (e.g. maximum principal stress in
he component), g (r, γ) is the geometry function. It is practical
o introduce an effective volume Veff which can be described as
he volume of tensile-test rods which show the same distribution
f strength as the original component and is dependent on the
ize of component, its stress distribution and the properties of
he assumed crack population.

eff =
∫

V

gmdV (15)

hen we put Eqs. (14) and (15) into Eq. (13) we get:

F,V(σ∗) = 1 − exp

[
−Veff

V0

(
σ∗

σ0

)m]
(16)

Because only very small failure probabilities (PF,V � 1) are
f practical significance, PF,V can be approximated using a Tay-
or expansion:

PF,V(σ∗) = 1 − exp

[
−Veff

V0

(
σ∗

σ0

)m]
≈

[
Veff

V0

(
σ∗

σ0

)m]

for PF,V � 1 (17)

When we decompose the stress field given in Eq. (12) as given
n Eq. (14), we get:

σ∗ = τt,max

g(r, γ) =

⎧⎪⎨
⎪⎩

( r

d/2

)
sin(γ) for 0 ≤ γ ≤ π

−
( r

d/2

)
sin(γ) for ≤ γ ≤ 2π

(18)

The determination of the effective volume Veff by Eq. (15)
eads:∫ πDNa

L=0

∫ π

γ=0

∫ d/2

r=0
rm

(
2

d

)m

(sin γ)mr dr dγ dL

in γ)
m

dγ = 2Vspring

π(m + 2)

∫ π

γ=0
(sin γ)m dγ

(19)
here we introduced the volume of the spring:

spring = π2

4
d3CNa (20)
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Table 1
Numerical calculated SV (m, C) for different Weibull modulus m and spring index C values

m C

8 10 12 14 16

6 2.48 × 10−3 1.36 × 10−3 7.17 × 10−4 4.54 × 10−4 2.75 × 10−4

7 2.92 × 10−3 1.61 × 10−3 8.57 × 10−4 5.39 × 10−4 3.26 × 10−4

−3 −3 −3 −4 −4
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8 3.31 × 10 1.85 × 10
9 4.04 × 10−3 2.33 × 10−3

0 4.66 × 10−3 2.76 × 10−3

Inserting the derived σ* and Veff into Eq. (16) results in:

F,V(τt,max) = 1 − exp

(
−4SV (m)Vspring

π2V0

(
τt,max

σ0

)m)
(21)

here SV (m) is a factor for the volume flaws which is dependent
n Weibull modulus m and equal to:

V (m) = π

2(m + 2)

∫ π

γ=0
(sin γ)m dγ (22)

The solution of the integral given in Eq. (22) involves the
amma function (Γ ) and is not given here explicitly. When the
actor SV (m) is known, the failure probability of the ceramic
prings due to volume flaws with different spring- and material-
arameters under desired loading can be calculated. In this part,

or simplicity the cracks in one specific plane were inves-
igated. Actually, in the material there are cracks oriented
n all directions. Therefore, in the next part SV (m) will be
alculated numerically by using the normal stress as failure
riterion.

. Procedure of numerical failure probability
alculation

The calculation of failure probability of multiaxially loaded
eramic springs is done in two steps, stress analysis using
he finite element software ABAQUS and statistical analy-
is using a finite element postprocessor STAU (STatistische
Uswertung) which was developed by the Probabilistic Group
t the IZSM at Karlsruhe University in cooperation with
everal partners.9 Mechanical properties which are typical

PF,V(τt,max) = 1 − exp

(
−4 exp (
or Si3N4 materials are chosen. During the stress anal-
sis, Si3N4 ceramic material is assumed to be isotropic
lastic with Young’s modulus E = 300 GPa, and Poisson’s
atio v = 0.25. In the calculation of the failure probabil-
ty, the normal stress criterion9 (Mode-I failure criterion) is
pplied.

3
o
s
t
p
w

1.00 × 10 6.24 × 10 3.76 × 10
1.26 × 10−3 8.76 × 10−4 5.71 × 10−4

1.55 × 10−3 1.08 × 10−3 7.19 × 10−4

. Results

The failure probability of a spring due to volume flaws with
iven spring- and material parameters under desired loading can
e calculated if SV (m) is known. In this part, the failure prob-
bility of springs will be computed with ABAQUS and STAU
nd from these results; the factor SV (m) will be obtained through
q. (21). The numerically calculated SV (m) values for different
and C values are given in Table 1.
During the calculations, it was observed that the factor SV (m)

lso depends on the spring index C. This dependence arises from
he effect of the transverse shear stress on the combined shear
tress occurring on the cross-section of wire. Furthermore, the
ncrease in C increases the contact area between the coils in the
EM analysis. The analytical solution does not take into account

hese effects. By fitting the results given in Table 1, SV (m, C) is
btained as a function of m and C as given below:

V (m, C) = exp(0.17036C − 0.27476m − 4.87303) (23)

The final form of the failure probability of the coil spring is

036C − 0.27476m − 4.87303) Vspring

π2V0

(
τt,max

σ0

)m)
(24)

or 6 ≤ C ≤ 10, 8 ≤ m ≤ 16, 1 ≤ d ≤ 4 and 4 ≤ Na ≤ 8. Eq. (24) is
alid for different materials. The Weibull parameters m and σ0
f the material can be directly put into the equation. The elastic
roperties E and v of the material affect σ0 in a load-controlled
cheme and τt,max in a displacement-controlled scheme.

In order to get a feeling for the reliability of a typical coil
pring, we compare the effective volumes of the bend bars and
ensile specimens with that of the spring having the same vol-
me. For a prescribed failure probability, the strengths of two
omponents with effective volumes Veff,1 and Veff,2 have a rela-
ionship as given below:

σ1

σ2
=

(
Veff,2

Veff,1

)1/m

(25)

Here 4-point-bending test (4PB), 3-point-bending test (3PB),
ensile test (TT) and spring test (ST) are modeled. For the 4PB,
PB and TT, according to the norm,17 specimens with a length
f 25 mm, height of 1.5 mm and width of 2 mm are used, corre-

ponding to a volume of 75 mm3. For the 4-point-bending test
he support distance of loading member is 10 mm and of sup-
ort member is 20 mm. For the spring test, the spring d1C6Na5
ith a volume of 74 mm3 is selected because it has approxi-
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ig. 4. Calculated reference stress σ* vs. effective volume Veff values for
-point-bending test, 3-point-bending test, tensile test and spring test for a
rescribed failure probability of PF,V = 10−4 due to volume flaws.

ately the same volume as the bend bar and tensile specimens.
ll four tests are modeled under loading conditions which give

he prescribed failure probability taken here as PF,V = 10−4 due
o volume flaws with σ0 = 750 MPa and m = 12. The maximum
rincipal stress occurring in all tests is recorded as the reference
tress, σ*. Afterwards, the effective volumes are calculated with
TAU. In Fig. 4, the reference stresses versus effective volume
alues for all tests are represented.

The slope of the curve given in Fig. 4 is 0.0847 which is less
han 2% close to the analytical value for m = 12. The amazingly
mall effective volume for the tensile test specimen is due to the
sotropic oriented crack planes.

The effective volume of the investigated coil spring is very
mall of the order of 10−2 mm3. Therefore, it is very probable
hat the failure of springs is due to the surface flaws. All calcu-
ations performed for the volume flaws will be now repeated for
he surface flaws. In Table 2, SS (m, C) values which are used in
rder to estimate the failure probability due to surface flaws are
iven for different m and C values.

After fitting the values in Table 2, the SS (m, C) function can
e formulated as

S(m, C) = exp (0.31872C − 0.18989m − 2.35129) (26)

The failure probability of the ceramic coil springs due to the
urface flaws can be written as
F,S(τt,max) = 1 − exp

(
−SS(m, C)Sspring

π2S0

(
τt,max

σ0

)m)

(27)

D
l
s
d

able 2
umerical calculated SS (m, C) for different Weibull modulus m and spring index C v

C

8 10

6 1.17 × 10−1 9.31 × 10−2

7 1.29 × 10−1 1.06 × 10−1

8 1.37 × 10−1 1.14 × 10−1

9 1.47 × 10−1 1.29 × 10−1

0 1.51 × 10−1 1.41 × 10−1
ending test, 3-point-bending test, tensile test and spring test for a prescribed
ailure probability of PF,S = 10−4 due to surface flaws.

here S0 is the unit surface area and Sspring is the total surface
rea of the spring and equal to:

spring = π2d2CNa (28)

For the same specimens and same spring used before, the
eference stress σ* and the effective surface Seff values for a pre-
cribed failure probability of PF,S = 10−4 due to surface defects
re given in Fig. 5. During the calculations for Fig. 4 and Fig.
, the unit volume and the unit surface was taken as 1. There-
ore, when the effective volume and effective surface are equal
o 1, the reference stress takes the same values for the volume
aws and surface flaws. When the surface flaws are taken into
ccount, the effective surface of the ceramic coil spring is higher
han the 3-point bending specimen. Comparing Figs. 4 and 5,
t can be concluded that the ceramic springs fail due to surface
aws.

.1. Proof test

A proof test assesses whether a given ceramic component can
urvive under conditions similar to or worse than what would
e expected in service. Proof testing is applied before placing
he part in service in order to improve reliability and increase
he likelihood that it will survive over its intended service life.

uring the proof test with ceramic springs, the springs will be

oaded with a stress which is larger than the desired stress in
ervice and those springs with low strength and containing large
efects can be eliminated. In addition, the proof test should be of

alues

12 14 16

6.46 × 10−2 5.23 × 10−2 3.56 × 10−2

7.94 × 10−2 6.23 × 10−2 4.30 × 10−2

9.15 × 10−2 7.12 × 10−2 5.04 × 10−2

1.11 × 10−1 9.29 × 10−2 7.45 × 10−2

1.34 × 10−1 1.13 × 10−1 9.41 × 10−2
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hort duration to avoid or reduce damage due to subcritical crack
rowth. Therefore, the loading- and unloading-rate in proof test
hould be high.

By applying a proof test with a stress σ∗
P which is larger than

aximum stress σ∗
C occurring in service, all the springs with

trength σ∗
C < σ∗

P will fail. The new failure probability G(σ∗
C)

f a spring which is loaded in the service with a stress higher
han σ∗

P will be calculated as18

(σ∗
C) = 1 − exp

[
Veff

V0

(
−

(
σ∗

C

σ0

)m

+
(

σ∗
P

σ0

)m)]
(29)

Putting the Eq. (21) into Eq. (29) gives

(σ∗
C) = 1 − exp

(
−4SV (m)Vspring

π2V0

(
−

(
σ∗

C

σ0

)m

+
(

σ∗
P

σ0

)m))
(31)

Replacing the σ∗
C and σ∗

P by the corresponding forces FC and
P according to Eqs. (8) and (18) gives:

(FC) = 1 − exp

×
(

−4SV (m)Vspring8mCm

π2+md2mV0σ
m
0

(−(FC)m + (FP )m
))

(32)

The same procedure can be applied for the surface flaws by
sing Eq. (27).

. Conclusion

The principal scaling of the failure probability in regard to
he volume of the spring and the reference stress was derived
y calculating the effective volume analytically for one selected
rack plane orientation. The generalization to arbitrarily oriented
rack planes was performed numerically by using ABAQUS
nd STAU and is expressed by the introduction of fitting func-
ions SV(m, C) and SS (m, C) for volume and surface flaws,
espectively. Comparison of the failure probability of the spring
ith 4-point, 3-point and tensile test bars shows that the effec-
ive volume of spring is extremely small (∼10−2 mm3). The
orresponding calculation for surface flaws clearly showed
hat surface flaws are strength controlling for ceramic coil
prings.
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